Mixed group divisible designs with three groups and block size 4
نویسندگان
چکیده
منابع مشابه
Group divisible designs with block size four and two groups
We give some constructions of new infinite families of group divisible designs, GDD(n, 2, 4; 1, 2), including one which uses the existence of Bhaskar Rao designs. We show the necessary conditions are sufficient for 3 n 8. For n= 10 there is one missing critical design. If 1> 2, then the necessary conditions are sufficient for n ≡ 4, 5, 8 (mod 12). For each of n=10, 15, 16, 17, 18, 19, and 20 we...
متن کاملConcerning cyclic group divisible designs with block size three
We determine a necessary and sufficient condition for the existence of a cyclic {3}-GDD with a uniform group size 6n. This provides a fundamental class of ingredients for some recursive constructions which settle existence of k-rotational Steiner triple systems completely.
متن کاملSplitting group divisible designs with block size 2×4
The necessary conditions for the existence of a (2 × 4, λ)-splitting GDD of type g are gv ≥ 8, λg(v−1) ≡ 0 (mod 4), λg2v(v−1) ≡ 0 (mod 32). It is proved in this paper that these conditions are also sufficient except for λ ≡ 0 (mod 16) and (g, v) = (3, 3).
متن کاملResolvable Modified Group Divisible Designs with Block Size Three
A resolvable modified group divisible design (RMGDD) is an MGDD whose blocks can be partitioned into parallel classes. In this article, we investigate the existence of RMGDDs with block size three and show that the necessary conditions are also sufficient with two exceptions. # 2005 Wiley Periodicals, Inc. J Combin Designs 15: 2–14, 2007
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2010
ISSN: 0012-365X
DOI: 10.1016/j.disc.2010.05.014